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Abstract-Crack growth in an elastic-plastic solid is studied by a computational model, in which a
cohesive zone model is used to characterize the fracture process. The separation work per unit area
and the peak stress required for separation are the basic parameters in the cohesive zone model, but
also an effect of plastic straining, reducing the peak stress for separation, is incorporated here. This
additional effect represents acceleration of the void growth process and nucleation of more voids,
resulting from intense plastic straining in the immediate vicinity of the crack tip, The analyses are
carried out for conditions of small-scale yielding under plane strain, with the mode I stress intensity
factors specified at the loading parameter. Also the effect of a T-stress on crack growth resistance
is investigated. Copyright © 1996 Elsevier Science Ltd.

I. INTRODUCTION

It is well known that dissipation in the plastic zone surrounding a crack tip makes a major
contribution to the macroscopic work of fracture of ductile materials. For metals and
metal-{;eramic interfaces which fracture by an atomic separation mechanism, the atomistic
work of fracture is typically on the order of r 0 = I J m -2, while it is not uncommon for the
macroscopic work offracture r ss needed to propagate a crack under steady-state conditions
to be as much as 100 J m- 2 or even 1000 J m- 2

, For the materials of concern in this paper
(metals failing by the mechanism of void nucleation, growth and coalescence) the work of
the fracture process is not always easy to identify. When separation takes place as a plane
of localized deformation with coalescing voids strung out ahead of the crack tip, r o is the
work per unit area expended in growing and coalescing the voids in this plane. It is
approximately ro = (JyD/2, where (Jy is the tensile yield stress of the metal and D is the
average void spacing (Tvergaard and Hutchinson, 1992), For structural metals, r o is
typically in the range from 102 to 104 J m- 2

, The macroscopic work offracture for steady­
state crack advance in structural metals fracturing by this mechanism is often many times
r 0, amplified by plastic dissipation in a zone which extends on either side of the fracture
plane over distances which are large compared to the size of the fracture process zone.

Tvergaard and Hutchinson (1992) have studied the role of plastic deformation in
amplifying crack growth resistance using a cohesive zone model. They account for the
interaction of the fracture process with the surrounding plastic zone by replacing the
fracture process by a traction-separation relation applied on the plane of the crack which,
in turn, is embedded within an elastic-plastic continuum. The most important parameters
specifying the traction-separation law (see Fig, 1) are the separation work per unit area r o
and the peak stress required for separation fj, Under small scale yielding, the steady-state
macroscopic work of fracture predicted by the model has the form

(1)
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Fig. I. Traction-separation relation for fracture process.

where the amplification factor F depends primarily on the dimensionless parameters shown
with N as the strain hardening exponent. Plots of F for three values of N are shown in Fig.
2a using values taken from Tvergaard and Hutchinson (1992). Included in Fig. 2b are plots
reproduced from the same reference of the normalized peak separation stress fJ/ay, as a
function of the volume fraction fo of the initial void population in the material. The peak
stress was computed using the Gurson model (1977) under the assumption that the void­
containing material elements in the separation plane undergo uniaxial straining.

Consider first the implications of the two plots in Fig. 2 for an elastic-perfectly plastic
material with N = O. Essentially no amplification of the steady-state toughness Cs occurs
if fJ/ay < 2, because separation occurs so readily that a substantial plastic zone does not
form. At the other limit, for peak stresses fJ above 2.97ay when N = 0, amplification
becomes unbounded according to the model. The maximum stress achievable ahead of a
crack tip in an elastic-perfectly plastic solid is 2.97ay, and thus separation cannot occur if
8 exceeds this level. As it stands, the model predicts that the crack tip would simply blunt
without advancing if fJ exceeds 2.97ay. Now turn to the trend in if as a function of initial
void volume fraction fo for N = 0 in Fig. 2b. The trends in the normalized steady-state
toughness with the dependence on if re-expressed in terms offo are displayed in Fig. 3. For
materials with no strain hardening and fa less than about 0.01, if exceeds 2.97ay and
therefore cracks would not propagate in this material. However, if more voids nucleate as
plastic straining occurs, fo and the corresponding value of fJ decay, so that the relevant
value of if/ay may fall below 2.97ay, giving rise to crack propagation. The transition value
of peak stress if for a hardening material with N = 0.1 is about 3.9ay corresponding to fa
less than about 0.007, as can be seen in Fig. 3. For N = 0.2, the transition values from Fig.
2 are less well determined but fJ can be seen to lie between 5 and 6 times ay. This corresponds
to a value offa of about 0.003.

The trends outlined above are accompanied by a transition in important details of the
fracture process mechanism. For values of fa above this transition the fracture process
involves multiple voids growing and coalescing ahead of the tip. This is the multiple void
interaction regime indicated in Fig. 3, for which the cohesive zone model described above
is intended. For values offo below the transition the process is primarily the interaction of
the crack tip and the void nearest to it. The cohesive zone model described above is not
adequate as it stands in the void by void crack advance regime. The intense deformation
very near the tip amplifies the growth of the void at the tip above what it would experience
in the separation plane further away from the tip. This same deformation may also bring
about the nucleation of new voids, effectively lowering the peak separation stress. One
possible approach to predicting crack growth in the regime of void by void advance is to
incorporate material elements containing individual voids in the crack model. Void
nucleation in the elements can also be included. This is the approach taken by a number of
researchers including Needleman and Tvergaard (1987), Rousselier (1987), Brocks et al.
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Fig. 2. (a) Steady-state macroscopic work of fracture vs peak separation stress. (b) Peak stress vs
initial void volume fraction, in a uniaxial strain state for no nucleation.

(1994) and Xia et al. (1995). In these models the spacing between the voids is an essential
parameter (as will be discussed in the final section of the paper) and crack growth is
computed as a process of discrete incremental advances of the tip from void to void. An
alternative approach will be pursued here wherein the cohesive zone model introduced in
the earlier work (Tvergaard and Hutchinson, 1992) will be extended to model the effect of
the intense near-tip plastic deformation on the traction-separation relation. The primary
modification is inclusion of an effect of crack tip plastic straining on the peak separation
stress fI, which is assumed to arise from either strain-induced void nucleation or accelerated
void growth. This extension of the model is qualitative in the sense that the modification is
not directly related to void growth or nucleation mechanics. Nevertheless, the modification
mimics behaviour expected in the regime of void by void growth, and therefore the model
expands the scope of the earlier model and reveals the limits of its validity.
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Fig. 3. Steady-state macroscopic work of fracture vs initial void volume fraction.

2. PROBLEM FORMULATION AND NUMERICAL PROCEDURE

The elastic-plastic solid to be analysed has an initial yield stress (Jy and a uniaxial true
stress-logarithmic strain curve specified by

(J ~ (Jy

(J ~ (Jy.

(2)

This behaviour is generalized to multiaxial stress states assuming isotropic hardening and
using the Mises yield surface, so that the continuum behaviour of the solid is characterized
by the set of parameters E, v, (Jy and N.

Finite strains are accounted for in the analysis (using a convected coordinate, Lag­
rangian formulation of the field equations) in which gii and Gii are metric tensors in the
reference configuration and the current configuration, respectively, with determinants g
and G, and "Iii = 1j2(Gii - giJ is the Lagrangian strain tensor. The contravariant components
r ii of the Kirchhoff stress tensor on the current base vectors are related to the components
of the Cauchy stress tensor (Jii by r

ij = JGi9 (Jii. Then, in the finite-strain generalization of
J2-flow theory discussed by Hutchinson (1973), the incremental stress-strain relationship
is of the form tii = Liikl~k" with the tensor of instantaneous moduli given by

Here, the effective Mises stress is (Je = (3sus
ij!2) 1/2, for sU = rU- GiirZ!3, and the value of f3 is

1 or 0 for plastic yielding or elastic unloading, respectively. Furthermore, Et is the slope of
the true stress vs natural strain curve at the stress level (Je'

The traction-separation relation used by Tvergaard and Hutchinson (1992, 1994) to
model the fracture process is shown in Fig. 1. This separation law is fully specified by the
work of separation r o, the peak stress a- and the shape parameters (jt!(j, and (j2!(jc' According
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Fig. 4. Example of a finite element mesh. (a) Full mesh. (b) Refined mesh along the crack line.
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to this model, failure initiates when the true normal stress ahead of the crack reaches the
value fl, and no crack growth is predicted at all if the stress level fl is not reached. A
modification of a cohesive zone model to represent a plastic strain controlled failure
mechanism has been employed by Tvergaard (1992, 1994) in studies of ductile particle
debonding during crack bridging in ceramics. With this modification the peak stress fl in
the traction-separation relation of Fig. 1 is gradually reduced when the effective plastic
strain s~ along the crack path has exceeded a critical value Se :

\""'
for s~ ~ Se

8 = 80 -A8(s~ -sJ/As, for Se < s~ < se+As. (4)

8-A8, for s~ ~ se+As

Thus, with eqn (4) the cohesive zone model accounts for a reduction of the material
strength, which could result from plastic strain controlled nucleation of voids or from
accelerated void growth near the crack tip.

The crack growth analyses are carried out for conditions of small-scale yielding. Due
to symmetry about the crack plane only half of the solid needs to be analysed, and the
numerical computations are carried out for a semicircular region with initial radius Ao, as
shown in Fig. 4. The xl-axis is in the crack plane and the initial crack-tip is located at
Xl = x2 = O. The traction-separation relation used to model the fracture process [see
Fig. 1 and eqn (4)] is specified everywhere on the boundary Xl > 0 and x2 = 0 of the
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region analysed, while zero tractions are specified for Xl ,:::;; 0 and x 2 = O. On the outer semi­
circular boundary, displacements are prescribed in accordance with the small strain
linear elastic mode I solution, for which the in-plane stress components near the crack­
tip are of the form

(5)

where (r, ()) are polar coordinates and bij is Kronecker's delta. The T-stress is taken to be
zero in most of the present analyses, but when T is non-zero the T-stress is applied first,
together with the corresponding transverse stress 0'33 = vT under plane strain conditions.
Subsequently, additional displacements are specified on the outer boundary according to
the singular K-field solution, by incrementally increasing the amplitude K. At some stages
of the deformation the value of the J-integral is calculated on a number ofcontours around
the crack-tip to check agreement with the prescribed amplitude K of the edge displacements,
and very good agreement is found in all the present computations.

Some computations have been carried out using the mesh also employed by Tvergaard
and Hutchinson (1992, 1994), while other computations make use of the slightly different
mesh shown in Fig. 4. In either case, a uniform mesh region with initial length Eo in front
of the initial crack-tip is used to model crack growth. The solutions are obtained by a linear
incremental method using a finite element approximation of the displacement fields in the
incremental version of the principle of virtual work. The elements used are quadrilaterals
each built-up of four triangular linear-displacement elements. In the uniform mesh region
in front of the initial crack-tip the length of one square element is denoted as do. The
present computations are carried out with be = O.ldo, bdbe= 0.15 and b2/be = 0.5. The
meshes used have Eo = 60do, or in a few cases Eo = 180do. In most of the computations
the external radius of the region analysed is Ao = 40,000Ao, but Ao = 80,000do has been
used in a few cases. A special Rayleigh-Ritz finite element method is employed to control
nodal displacements within the fracture process zone (see also Tvergaard, 1990b). This is
necessary when K has reached the steady-state value while the crack still grows. The value
of the effective plastic strain e~ in eqn (4) is calculated as the average over the quadrilateral
element adjacent to the point considered in the debonding region.

Two reference quantities, Ko and Ro, are used for the presentation of results

(6)

1 (Ko)2
Ro = 3n O'y

(7)

Here, Ko represents the mode I stress intensity factor needed to advance the crack when
plastic dissipation is negligible, i.e. the value needed to supply just the work of the fracture
process r o, when the modification in eqn (4) is not active. The expression for r ois

(8)

The reference length Ro scales with the size of the plastic zone when K ~ Ko.

3. RESULTS

The elastic-plastic material to be analysed here is taken to be characterized by the
parameter values N = 0.1 and (Jy/E = 0.003 in (2), and the value of Poisson's ratio is
v = 0.3. For the traction~separation relation the two parameters 0-0 and ro (or Ko) will
appear directly in the figures presenting the results, and additional parameters are those
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Fig. 5. Crack growth resistance curves for uo/ay = 3.6 and T/ay = O.

defining shape, bl/be = 0.15, b2/b e = 0.5, and the maximum separation to mesh size ratio,
be/ ~o = 0.1. The same set of parameters has been used in previous analyses of the effect of
plasticity on crack growth resistance (Tvergaard and Hutchinson, 1992, 1994).

Figure 5 shows crack growth resistance curves computed for iJo/(Jy = 3.6, with zero T­
stress. For the case where e~ has no influence on debonding (ee large in eqn (4)) this was
also analysed by Tvergaard and Hutchinson (1992) to determine the relative value of the
steady-state toughness Kss/ Ko. In Fig. 5 the effect of a plastic strain-controlled failure
mechanism eqn (4) is considered, taking iJo/(Jy = 3.6, (iJo-~(J)/(Jy = 0.1 and ~e = 0.05. It
is seen that for ee = 0.01 the steady-state value Kss/Ko is much reduced, and the peak
toughness is reached at about half the crack growth, ~a. For ee = 0.03 the values of KR/Ko
at a given value of ~a/~ are only slightly reduced, and for ee = 0.05 (or larger) the
modification of the traction-separation law to account for plastic straining has no effect.
It is noted in relation to Figs 2 and 3 that r R/r0 is simply (KR/KO)2.

In the analysis of Fig. 6 all parameter values are the same as those used in the previous
figure, apart from iJo/(Jy = 4.0. For this higher value of the peak stress a steady-state
toughness was not reached in the range analysed by Tvergaard and Hutchinson (1992),
and no steady-state is reached in Fig. 6 in the range considered, apart from the case of the
lowest critical strain for the onset of plastic strain controlled failure, ee = 0.01. For increas­
ing values of ee the levels of K R / Ko increase significantly, so that for ee = 0.07 the highest
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Fig. 6. Crack growth resistance curves for uo/ay = 4.0 and T/ay = O.



0.03

E: c =O.01

1Ol::_0.07

0
0 10

2 3 4 5 6
tla/R o

4

3

2

o
o

5 0.05

3304 V. Tvergaard and J. W. Hutchinson

KR
Ko 6 0.07

Fig. 7. Crack growth resistance curves for fio/(Jy = 4.4 and T/(Jy = O.

value of KR/Ko shown is 5.7, indicating that a much higher steady-state toughness may be
reached at somewhat larger values of l1a/Ro.

Similar curves for an even higher value of the peak stress in the process region,
ffo/ay = 4.4, are shown in Fig. 7. Also here a steady state is reached for Se = 0.01, but at a
larger value of l1a/Ro than that found in Fig. 6. For the highest critical strain value
considered (se = 0.07) a value of KR/Koas high as 6.5 is reached at l1a/Ro = 4.9. The insert
in Fig. 7 shows this computation continued to l1a/Ro = 12, where KR/Ko ~ 8.25, and here
the positive slope at the end of the curve suggests that reaching a steady state would require
continuation of the crack growth computation to a significantly larger value of tla/Ro. The
insert in Fig. 7 is obtained by using Bo = 180110, and further continuation would require an
even larger uniform mesh region in front of the initial crack tip. However, the effect of the
plastic strain controlled failure mechanism (4) on the predicted resistance curves is
sufficiently well illustrated by the initial parts of the curves shown in Figs 6 and 7. As
discussed in the Introduction, the fully stress-controlled debonding model cannot predict
crack growth for N = 0 if ff/ay > 2.97, and for N = 0.1 the value of ff/ay should be smaller
than about 3.9. But the present studies with the plastic strain controlled failure mechanism
(4) show much crack growth even for ffo/ay = 4.4.

The possibility of using the crack growth model with stress-controlled debonding to
present resistance curves for very tough pressure vessel steels was discussed by Tvergaard
and Hutchinson (1994), in terms of the non-dimensional tearing modulus introduced by
Paris et al. (1979). It was concluded that the initial slope of curves such as that for Ge = 0.05
in Fig. 5 can be interpreted as a tearing modulus of no more than about 100, which is only
about half the values of the tearing modulus for the nuclear pressure vessel steel A533B or
the ASTM 719 grade A steel. Now, by comparing the initial parts of the resistance curves
in Figs 5-7, it is seen that the initial slope does increase when a higher value of ffo/ay is used
together with the strain-controlled failure mechanism. Thus, it appears that the crack
growth model studied in the present paper will be able to better model the behaviour of the
toughest materials.

Comparison of the resistance curves in Figs 6 and 7 shows that rather similar curves
can be obtained by different combinations of the parameter values ffo/ay and Se' Thus, in
the range shown, the curve for ffo/ay = 4.0 and Ge = 0.07 in Fig. 6 is seen (by interpolation
in Fig. 7) to be rather close to a curve for ffo/ay = 4.4 and Ge ~ 0.045. Similarly, the curve
for ffo/ay = 4.0 and Ge = 0.03 would be rather close to a curve for ffo/ay = 4.4 and Se ~ 0.025.

It has been noted above that crack growth models based on porous ductile material
descriptions are strongly mesh-dependent (e.g. see Needleman and Tvergaard, 1994). Thus,
for the dilatant plasticity models the mesh size is actually used to represent the void spacing
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ahead of the crack. Also the present cohesive zone representation of the process region
leads to mesh sensitivity, when a plastic strain-controlled failure mechanism is incorporated
in terms of (4). However, in the present model two length scales are specified for the process
region, i.e. the maximum separation be in the cohesive zone and the mesh size Ao in the
process region, and it turns out that the mesh sensitivity depends only on the value of the
ratio be/Ao, which is 0.1 in Figs 5-7. In addition, Ro in eqn (7) defines a length, which scales
with be for fixed values of uo/Uy, uy/E and v. The curve for 8e = 0.03 and uo/uy = 4.0 in Fig.
6 has been recomputed using a mesh twice as fine, without changing the value of be, and
this resulted in a higher resistance curve similar to that for 8e = 0.07 in Fig. 6, with a higher
initial slope. On the other hand, a computation using half the value of both Ao and be gives
a resistance curve identical to that in Fig. 6. Thus, comparing this to the resistance curves
shown in Figs 5-7, the mesh dependence is such that a value of bclAo larger than 0.1 will
tend to give higher resistance curves than those shown in the figures, and a value smaller
than 0.1 will tend to give lower curves, for fixed values of all other parameters. When Xia
et al. (1994) use a modified Gurson model (Tvergaard, 1990a) with a fixed set of material
parameters to compare resistance curves for different specimen geometries, they must use
the same mesh size in the crack growth region in all computations. The same will be true
for the crack growth model studied in the present paper, since the material parameters to
be kept fixed include be.

The cohesive zone based crack growth model describing a fully stress-dependent failure
criterion has been used by Tvergaard and Hutchinson (1994) to study the effect of a T­
stress. This study is extended here to consider the effect of a plastic strain-controlled failure
mechanism, as represented by (4). As described in connection with eqn (5) the T-stress is
applied first in these small scale yielding analyses, and subsequently the amplitude K of the
singular mode I solution is increased incrementally. Only T-stress levels below the yield
limit for uniaxial plane strain tension or compression are applied, so that the onset of
yielding follows K, and so that the radius Aoof the region analysed is much larger than the
final plastic zone size in all cases.

Figure 8 shows resistance curves computed for uluy = 4.0 and 8e = 0.03, for different
values of T. Apart from T all parameter values and mesh sizes are identical to those
considered in Fig. 6, and thus the curve for T = 0 in Fig. 8 is identical to that for 8e = 0.03
in Fig. 6. As expected, based on the results of Tvergaard and Hutchinson (1994), the curve
for T/uy = 0.5 differs only little from that corresponding to zero T-stress, whereas the
resistance curves for negative T-stress values show significantly increased toughness. At
Aa/Ro = 5.5 the value KR/~ is a great deal higher for TjUy = -I than for T = 0 or
Tluy = 0.5. The insert in Fig. 8 shows the curves for TjUy = 0 and for T/uy = -0.8
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Fig. 8. Crack growth resistance curves for uo/uy = 4.0 and E, = 0.03.



3306

~R
6

Ko 5

4

3

2

V. Tvergaard and J. W. Hutchinson

a

a
a 2 3 4 5 6 7

Lia/Ro

Fig. 9. Crack growth resistance curves for fjo/ay = 3.6 and E, = 0.03.

5

4

3

2

T/a y =-1

a
a 2 3 4 5 6 7

Lia/Ro

Fig. 10. Crack growth resistance curves for fjo/a y = 4.0 and Ec = 0.05.

continued to values of !1a/Ro as large as 17, and it is seen that the first curve reaches a
steady-state at Kss/Ko = 4.30, whereas the latter curve keeps growing beyond the value
KR/~ = 6.73 reached in the insert.

In Fig. 9 similar results are shown for a lower value of the debonding peak stress,
fJo/ay = 3.6, but still for Be = 0.03. Thus, the resistance curve for T = 0 is identical to that
for Be = 0.03 in Fig. 5. In this case the effect of negative T-stress is stronger than that found
in Fig. 8, since the relative increase of KR/ Ko at !1a/Ro = 5.5 is larger. It is noted that here
the steady-state toughness, K:'/Ko = 3.09, has been reached for T = 0, while the toughness
still increases strongly for Tjay = - 1. It is also noted that the initial slope is a great deal
higher for the negative T-stress.

In Fig. 10 the debonding peak stress is kept equal to that in Fig. 8, fJo/ay = 4.0, but
the critical strain value is increased to Be = 0.05. Thus, here the curve for T = 0 is that for
Be = 0.05 in Fig. 7. It is seen that in this case the difference between the two resistance
curves at !1a/Ro = 5.5 is similar to that found in Fig. 8, but at a higher level of KR / Ko, so
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that the relative difference is actually smaller. Also here the initial slope of the resistance
curve is clearly higher for the negative T-stress.

4. CONCLUDING DISCUSSION

Initiation toughness in metals whose mechanism of fracture is void growth and coales­
cence is proportional to the product of yield stress and void spacing, r o ~ (lyD, as originally
detailed by Rice and Johnson (1970) and as seen in the present model. The initial area
fraction of the voids on the fracture plane, fo, is an independent parameter, which largely
controls the crack growth resistance when there is no void nucleation, as documented in
the Introduction. In particular, the relation (1) for the enhancement of the steady-state
toughness above the initiation toughness can be expressed again as r,jro = F(fo, N), which
is plotted in Fig. 3.

In this paper a modification of the traction-separation law on which the results of Fig.
3 are based has been considered for the purpose of examining the role of the intense plastic
strain in the immediate vicinity of the crack tip on accelerating the void growth process
and on nucleating more voids. The modification reduces the peak separation stress a
continuously as a function of local plastic strain for plastic strains above a critical value Ge .

The modification has essentially no influence on the initiation toughness characterizing the
onset of crack growth (recall that the normalizing factor Ko in Figs 5-10 is defined in (6)
and (8) in terms of the initial peak traction stress, 0'0)' Moreover, when Ge is larger than about
a value between 0.05 and 0.1, depending somewhat on 0'0, N and bel~o, the modification also
has little influence on crack growth resistance, since the full crack growth resistance of the
unmodified model then develops. However, when Ge is less than this value, significant
reductions in the crack growth resistance take place. Quantitative connections between the
trends predicted by the modification and the micromechanics of void nucleation and growth
cannot be made, but qualitative implications can be drawn.

In the regime of multiple void interaction, crack growth tearing resistance, as opposed
to initiation, depends primarily on the void volume fraction on the potential fracture
plane. Increasing this void volume fraction by the nucleation of additional voids, perhaps
associated with a population of smaller second phase particles, has the potential of sig­
nificantly lowering the relative crack growth resistance (e.g. r,,/ro) if the plastic strain at
which they are nucleated is not too large. This is the type of behaviour represented by
the present plastic strain dependent traction~separation law. Conversely, control of the
distribution of void-nucleating particles in such a way as to reduce the effective value offa
on the path of least resistance in front of the crack tip will increase the crack growth
resistance without necessarily increasing the initiation toughness, which is tied more closely
to the spacing D of the primary voids. The results in Fig. 3 suggest that relatively small
changes in fo can have relatively large effects on the crack growth resistance, further
emphasizing the importance of control of the population of voids. In the regime of void by
void growth, the traction law modification employed here predicts crack growth even at
high levels of O'o/(ly, for which the model without modification would only result in crack
tip blunting.

In the regime of void by void growth a model such as the present one, based on an
embedded cohesive zone, does not directly account for the interaction of the crack tip and
the voids nearest to it and therefore the interaction can only be represented qualitatively.
Alternative computational models are those based on a porous ductile material model, as
applied by Needleman and Tvergaard (1987, 1991), Rousselier (1987), Sun et al. (1992),
Brocks et al. (1994) and Xia et al. (1995). In these finite element models the mesh must
capture the interaction between the tip and the near-tip voids on the order of a distance D
away as the tip advances, and void spacing D needs to enter explicitly in the models. A
highly refined fine scale analysis of the tip-void interaction is currently out of reach with
such models. Instead, nearly all these models have taken the element size to be on the order
of D, and some models have used the interpretation that void containing elements are
situated along the plane ahead of the crack tip. As such, these models display mesh
dependence. To be used effectively, a particular mesh choice for a given material must be
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calibrated against at least one set of experimental crack growth data. This procedure is
discussed in some detail by Xia et al. (1995). The present model also displays mesh
dependence in its modified form, since the plastic strain near the tip is sensitive to the size
of the finite elements along the line of the crack. When this model based on the embedded
cohesive zone is used for a particular material, both the parameter values specifying the
traction-separation law and the mesh size along the crack growth path must be kept fixed.
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